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Abstract: An efficient method for the solid phase synthesis of N-alkylcarbamate oligomers from alternating carboxylic
acid and N®*-Fmoc protected chiral p-nitrophenylcarbonate monomers has been developed. The general synthetic scheme
involves four steps per coupling cycle: deprotection of the terminal amino group of the growing oligomer, acylation of the
free amine with a carboxylic acid monomer. reduction of the resulting amide bond with borane and coupling of the

secondary amine to a N*-Fmoc protected p-nitrophenyl carbonate monomer. This novel biopolymer which has two side
chain residues per backbone carbamate linkage and no backbone hydrogen bond donors may provide new frameworks for

drug design as well as folded domains with novel physical and biological properties. Copyright © 1996 Elsevier Science Ltd

Polypeptides can fold into a large number of three dimensional architectures with functions ranging from
selective binding and catalysis to cellular structure and motility. The remarkable properties of polypeptides
suggest that synthetic polymers of defined lengths and sequence composed of unnatural building blocks may
also possess novel chemical and biological properties. 15 Such “unnatural biopolymers” may afford improved
frameworks for drug design as well as new folding patterns which may serve to test current notions of
polypeptide structure and folding. In order to begin to characterize polymers of this sort, efficient biosynthetic
or solid-phase synthetic routes must be developed. Reported here is a method for the solid-phase synthesis of
oligo(N-alkylcarbamates) from alternating chiral amino alcohol and carboxylic acid building blocks.

Previously, it was shown that oligocarbamates (and libraries thereof) could be synthesized by solid
phase methods from optically active N%-Fmoc protected-p-nitrophenyl carbonate monomers and that these
oligocarbamates are more hydrophobic and protease resistant than oligopeptides.1 Here we report conditions
which allow for the selective alkylation of the main-chain carbamate nitrogen atoms. This modification
simultaneously increases the density of side-chains, removes main-chain hydrogen bond donors and decreases
the conformational freedom of the backbone.6 The general scheme for the solid phase synthesis of this oligomer
involves four steps per cycle: deprotection of the terminal amino group of the growing oligocarbamate chain,
acylation of the free amine with a carboxylic acid monomer, reduction of the amide bond with borane and
coupling of the resulting secondary amine to the next N®-Fmoc protected p-nitrophenylcarbonate monomer.
Previously, reductive amination conditions have been used to effect nitrogen alkylations on solid support.7 In
contrast, the introduction of a functional group on nitrogen by amine acylation allows the use of a large number
of carboxylic acid monomers and takes advantage of existing efficient methods for solid phase amide bond

formation.3 Furthermore, borane will selectively reduce amide linkages in the presence of carbamates and is
9,10

11

tolerant of most acid-labile side-chain protecting groups.
Oligomer synthesis was carried out on Rink resin,” - which is stable both to borane reduction and to the

basic conditions required to hydrolyze the resulting nitrogen-boron complex. Solid-phase synthesis was
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initiated by coupling an N®-Fmoc protected p-nitrophenylcarbonate monomer (0.3 mmol), derived from the
corresponding optically active amino alcohol, to the free amine of Rink resin (0.1 mmol free amine, 0.46
mmol/g) in N-methylpyrrolidinone (NMP) in the presence of N-hydroxybenzotriazole (HOBt, 1.0 mmol) and
diisopropylethylamine (DIEA, 0.3 mmol).!&:P The Fmoc protecting group was removed by treatment with 20%
piperidine in NMP. Acylation of the primary amine was carried out by addition of the desired carboxylic acid
(1.0 mmol), HOBt (1.0 mmol), 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
(HBTU, 1.0 mmol) and DIEA (6 mmol) in 3 mL DMF at room temperature for 1 h followed by washing of the
resin with CH2Cl2. The Kaiser ninhydrin test!? indicated quantitative coupling efficiencies as did cleavage of
the products from solid support and high performance liquid chromatography (HPLC) analysis of reaction
products. The resin was then suspended in a 1.0 M solution of borane in tetrahydrofuran (THF) at 50°C for 1 h
followed by careful quenching of the excess reagent with methanol. While borane reductions of amide bonds
have been worked up under both acidic and alkaline conditions, the linker and side-chain protecting groups
necessitated an alkaline work up procedure. Optimal results were achieved by the addition of three equivalents
of 2 0.06 M solution of 1,8- diazabicyclo{5.4.0Jundec-7-ene (DBU) in NMP:methanol (9:1) at room temperature
for 6 hr, followed by extensive washing of the resin with CH2Cl2. The reduction was monitored by HPLC
analysis of the cleaved product and the reduction typically proceeded in quantitative yield. The next N®¢-Fmoc
protected p-nitrophenylcarbonate monomer (0.5 mmol) was then coupled to the support-bound secondary amine
in THF with HOBt (1.0 mmol) and DIEA (1.1 mmol) at 50 °C; after 5 hr the resin was resubmitted to the
coupling conditions. Ninhydrin test,12 bromophenol biue stainjng13 and quantitative Fmoc a.nalysis14
indicated that even difficult couplings, such as the coupling of a valyl p-nitrophenyl carbonate monomer to a
stcrically;)ulky isobutyl secondary amine, proceeded in greater than 96% yield.
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Scheme 1
Cleavage of the oligomers from the support and complete side-chain deprotection was accomplished by a
low/high 15 cleavage procedure using 10% trifluoroacetic acid (TFA) in CH2ClI7 followed by treatment with
90% aqueous TFA. 15 Following removal of TFA in vacuo, crude material was dissolved in ethyl acetate and
precipitated by addition to a 95:5 hexane: s-butylmethyl ether solution followed by repeated washing of the
precipitate with the same solvent. Using these methods, four pentamers were synthesized.
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Structures of oligomers were confirmed by NMR and mass spectroscopy of the purified oligomers. In
general, the N-alkyl carbamate oligomers could be isolated in reasonably high yield (70-90%) and high purity. 18
The synthetic methods are compatible with a variety of side chain residues (amino, guanidine, hydroxylic, etc.).
Evaluation of the structural and pharmacological properties of oligo(N-alkylcarbamates) is currently being

undertaken.
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Spectroscopic data for the N-alkyl carbamates synthesized on solid support is as follows:

N-alkylcarbamate 1. Cleavage of 0.024 mmol of resin gave 11 mg (68%). I NMR (400 MHz, DMSO-dg 373 K)
0.60-1.10 (m, 18), 1.24-1.30 (m, 4), 1.4-1.6 (m, 1), 1.78 (s, 3), 1.9-2.0 (m, 2), 2.6-3.0 (m, 4H), 3.8-4.5 (m, 9}, 5.9-6.1 (2,
br), 6.65 (d, 2, J=8.2), 6.95 (d, 2. J=8.4), 7.10-7.30 (m, 3), 7.45 (m, 1), 7.81 (m, 1). HRMS (FAB): Calcd. for
C36Hs3N408: 671.4020. Found: 617.4020.

N-alkylcarbamate 2. Cleavage of 0.034 mmol of resin gave 20.1 mg (80%). IH NMR (400MHz, DMSO-dg, 373 K).
0.67 (d, 3, J=6.5), 0.69 (d, 3, ]=6.5), 0.94 (m, 6), 1.10 (t, 3, J=6.9), 1.13 (s, 3), 1.15 (m, 2), 1.20-1.70 (m, 10), 2.75 (m,
2), 3.64-4.21 (m, 9), 6.10-6.14 (br, 2), 6.72 (d, 2, J= 8.1), 6.94 (d, 2, J=8.2), 7.35 (br, 3), 7.54 (br, 1). HRMS (FAB):
Caled. for C31H55N508; 624.3972. Found: 624.3968

N-alkylcarbamate 3. Cleavage of 0.024 mmol of resin gave 12 mg (72%). lH NMR (400MHz, DMSO-dg, 373K),
1.02-1,11 (m, 13), 1.43-1.47 (m, 4), 1.74 (s, 3), 2.73 (m, 2), 3.04 (m, 2), 3.93-4.41 (m, 9), 6.14 (br, 2), 6.89 (br, 2), 7.23
(m, 5), 7.43 (br, 1). HRMS (FAB): Calcd for C27H45N707- 580.3459. Found: 580.3452.

N-alkylcarbamate 4. Cleavage of 0.020 mmol of resin gave 9 mg (73%). 1l NMR (400 MHz, DMSO-dg, 373 K) 0.75
(t, 3, I=6.5), 0.94 (d, 3, J=6.6), 1.12 (d, 3, J=6.9), 1.43 (m, 5); 1.81 (s, 3), 2.81-2.93 (m, 4), 3.24-4.21 (m, 9), 6.02 (br, 2),
6.63 (d, 2, J=8.4), 6.93 (d, 2, J=8.4), 7.23 (m, 3), 7.32 (2, m). HRMS (FAB): Calcd. for C31H45N409: 617.3186. Found:
617.3180.
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